Исследование структуры и свойств мембранных рецепторов: рецептора фактора роста эпидермиса человека и галобактериального трансдьюсера

Тип работы:
Диссертация
Предмет:
Биофизика
Страниц:
120
Узнать стоимость новой

Детальная информация о работе

Выдержка из работы

Актуальность проблемыВсе живые организмы состоят из клеток. Жизнь каждой клеткинроисходит в тесном взаимодействии с другими клетками и окружающейсредой. Это взаимодействие немыслимо без поступления сигналов извне, ихпередачи, обработки и соответствующей реакции. Таким образом, системыпередачи и обработки сигналов в клетке являются одной из важнейшихобластей исследований современной биологии. В данной работе были изучены два белка: галобактериальныйтрансдьюсер 2 (Гтр2) из Natronobacterium pharaonis и рецептор фактора ростаэпидермиса (РФРЭ) из Homo sapiens. Оба эти белка отвечают затрансмембранную передачу сигнала и выполняют важные функции в клетке. Нас интересовали характерные особенности устройства этих систем, возможность выделить некоторые черты и закономерности, присущие имобоим. Natronobacterium pharaonis относится к царству Архебактерий иявляется типичным экстремальным галофилом, предпочитая для обитанияводоемы с высоким содержанием неорганических солей. При недостаткепитательных веществ и кислорода N. pharaonis осуществляет фотозависимыйсинтез АТФ, при избытке — старается избегать освещенных участков из-зариска фотоокисления ДНК ультрафиолетом. Для этого клеткой синтезируютсясенсорный родопсин 2 (СР2) и Гтр2, образующие в мембране комплекс состехиометрией 2:2 [1]. Носле возбуждения СР2 квантом света рецепторпретерпевает конформационные изменения, которые затем передаются наГтр2 [2]. Трансдьюсер модулирует активность цепи киназ, в конечном счётеопределяющих частоту переключений флагеллярного мотора, что, в своюочередь, влияет на направление движения клетки таким образом, чтобы онаоставалась преимущественно в затенённых областях. 10Гтр2 представляет собой 2 трансмембранные спирали и относительнобольшой цитоплазматический домен (Гтр2-цит). Белок имеет высокуюстепень гомологии с эубактериальными хеморецепторами, что говорит об ихфункциональном и эволюционном родстве [3]. Структуры и механизмвзаимодействия СР2 и Гтр2 в мембранной области уже известны, однакодетали передачи сигнала цитоплазматическим доменом до конца не ясны. Таким образом, цитоплазматический домен Гтр2 является недостающимзвеном в понимании работы системы отрицательного фототаксиса вN. pharaonis. Поэтому первая часть работы была посвящена структурнойхарактеризации Гтр2-цит и исследованию фолдинга этой части Гтр2. РФРЭ человека играет важнейшую роль в жизни клетки и организма. Белок состоит из трех основных доменов: внеклеточного, ответственного засвязывание с лигандом, трансмембранного и внутриклеточного, имеющего всвоем составе тирозин-киназу. Связывание лиганда с внеклеточным доменомРФРЭ активирует киназу, запускающую многочисленные сигнальные пути. Отклонения от нормального функционирования грозят глубокиминарушениями в работе клетки вплоть до её злокачественного перерождения[4]. Структуры внеклеточного домена РФРЭ и тирозин-киназы известны [57]. Тем не менее, роль трансмембранного домена остается непонятной: онможет быть как пассивным мембранным & laquo-якорем»-, так и активно участвоватьв передаче сигнала. Прилегающая к мембране (примембранная) и богатаяосновными аминокислотными остатками область, следующаянепосредственно за трансмембранным доменом РФРЭ, как было недавнопоказано, тоже имеет важное функциональное значение. Не ясно, однако, какую роль эта область играет в передаче сигнала. Вторая часть даннойработы была посвящена исследованию трансмембранной и прилегающей кмембране областям РФРЭ (тмп-РФРЭ). Также были частично изученывнеклеточный и внутриклеточный домены РФРЭ.

11Цели и задачиЦелями части настоящей работы, посвященной Гтр2-цит, были: — создание экспрессионных плазмидных конструкций, разработка системыэкспрессии и очистки Гтр2-цит-- всестороннее исследование биофизических свойств, особенностей фолдингаи внутримолекулярной динамики белка, его способности к олигомеризациипри разных условиях-- определение структурных параметров Гтр2-цит. Задачи части работы, посвященной РФРЭ, заключались в: — создании экспрессионных плазмидных конструкций, разработке системэкспрессии внеклеточного, внутриклеточного доменов РФРЭ и тмп-РФРЭ иочистки внутриклеточного и тмп-РФРЭ-- конформационном и структурном анализе тмп-РФРЭ при разных физикохимических условиях. Научная новизиаВ ходе работы были исследованы Гтр2-цит из N. pharaonis и различныедомены РФРЭ человека. Основные результаты с точки зрения научнойновизны приведены ниже. Впервые был получен, очищен и исследован при различных физикохимических условиях Гтр2-цит. С помощью КД, ЯМР, И К Фурьеспектроскопии детально изучена конформационная динамика в белке взависимости от состава растворителя. В работе показано, что в разбавленныхводных растворах Гтр2-цит имеет высокую конформационную подвижность-при этом некоторые соли и спирты способны стабилизировать и/илииндуцировать заметные количества а-спиральных элементов вторичнойструктуры. С помощью МУРН определены форма и размеры Гтр2-цит. Вместес АГФХ и кросс-линкингом это позволило также исследовать способностьГтр2-цит к олигомеризации и агрегации. На основании полученных данных поаналогии с системами хемотаксиса в Escherichia coli и Salmonella typhimurium12предложена модель передачи сигнала в системе фототаксиса экстремальныхгалофилов. Осуществлена экспрессия внеклеточного домена РФРЭ человека вклетках линии C0S-1 из Cercopithecus aethiops, а также экспрессиявнутриклеточного домена этого белка в клетках линии C0S-1 и Escherichiacoli. Тмп-РФРЭ был впервые получен рекомбинантным путем. Для этойконструкции были подобраны оптимальные условия экспрессии в Escherichiacoli и последующей очистки. С помощью КД исследовано содержаниеэлементов вторичной структуры в белке в зависимости от окружения. Методом ЯМР показаны переходы в третичной структуре тмп-РФРЭ вмицеллах детергентов разных типов. Также методом кросс-линкингаопределено олигомерное состояние тмп-РФРЭ и его способность к агрегациив детергентах и липидном окружении.

ВЫВОДЫ

1. Создана плазмидная конструкция, соответствующая цитоплазматическому домену галобактериального трансдьюсера 2 (Гтр2-цит, аминокислотные остатки 234−504 Гтр2) из Natronobacterium pharaonis, осуществлена успешная экспрессия мутантного гена в Escherichia coli, разработана система очистки рекомбинантного Гтр2-цит с выходом около 10 мг/л клеточной культуры.

2. В разбавленных водных растворах Гтр2-цит обладает высокой конформационной подвижностью. Спирты, сахара, соли и свободные протоны индуцируют и/или стабилизируют вторичную структуру Гтр2-цит- в случае солей количество а-спиральной вторичной структуры и её устойчивость к тепловой денатурации, а также склонность Гтр2-цит к агрегации зависят от природы соли. В частности, в растворах 4 М хлоридов щелочных металлов наблюдаемое количество а-спиральных элементов вторичной структуры убывает в ряду Na+ > Li+ > К+ > Rb+ > Cs+, а температура денатурации — в ряду Li+ > Na+ > К+ > Rb+.

3. В разбавленных водных растворах Гтр2-цит мономерен и имеет цилиндрическую форму с характерными размерами 202±5 А в длину и 14,4±0,6 А в диаметре. При условиях, близким к физиологическим (4 М КС1), Гтр2-цит преимущественно димерен, характерные размеры при сохранении общей формы увеличиваются до 248±7 А и 18,2±0,8 А, соответственно [ 'vsbiblioteka.ru', 17 ].

4. Создана плазмидная конструкция, соответствующая трансмембранному + примембранному доменам рецептора фактора роста эпидермиса (тмп-РФРЭ, аминокислотные остатки 615−686 РФРЭ) из Homo sapiens, осуществлена успешная экспрессия мутантного гена в Escherichia coli, разработана система очистки рекомбинантного тмп-РФРЭ с выходом около 5 мг/л клеточной культуры.

5. Тмп-РФРЭ имеет схожее содержание элементов вторичной структуры в мицеллах различных детергентов, существенно отличное от такового в липидном окружении. Третичная структура тмп-РФРЭ различна в разных детергентах даже при количественном совпадении элементов вторичной структуры.

6. Данные настоящей работы указывают на то, что конформационная динамика является общим свойством отдельных областей белков, осуществляющих трансмембранную передачу сигнала.

Показать Свернуть

Содержание

Список сокращений

Список литературы

1. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, & Engelhard M2002) Molecular basis of transmembrane signalling by sensory rhodopsin Il-transducer complex. Nature, 419,484−487.

2. Moukhametzianov R, Klare JP, Efremov R, Baeken C, Goppner A, Labahn J, Engelhard M, Buldt G, & Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature, 440, 115−119.

3. Le Moual H & Koshland DE, Jr. (1996) Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J. Mol Biol, 261,568−585.

4. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, & Burgess AW2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res., 284,31−53.

5. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, & Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 110, 775−787.

6. Stamos J, Sliwkowski MX, & Eigenbrot С (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem, 277,46 265−46 272.

7. Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell, 80,213−223.

8. Stock J (1996) Receptor signaling: dimerization and beyond. Curr. Biol., 6, 825−827.

9. Szurmant H & Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev., 68,301−319.

10. Hoff WD, Jung KH, & Spudich JL (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct., 26,223−258.

11. Luecke H, Schobert B, Richter HT, Cartailler JP, & Lanyi JK (1999) Structure of bacteriorhodopsin at 1. 55 A resolution. J. Mol. Biol., 291, 899 911.

12. Kolbe M, Besir H, Essen LO, & Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science, 288, 1390−1396.

13. Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E, & Navarro J (2001) X-ray structure of sensory rhodopsin II at 2. 1-A resolution. Proc. Natl. Acad. Sci. U. S. A, 98, 10 131−10 136.

14. Kamo N, Shimono K, Iwamoto M, & Sudo Y (2001) Photochemistry and photoinduced proton-transfer by pharaonis phoborhodopsin. Biochemistry (. Mosc.), 66, 1277−1282.

15. Hirayama J, Imamoto Y, Shichida Y, Kamo N, Tomioka H, & Yoshizawa T (1992) Photocycle of phoborhodopsin from haloalkaliphilic bacterium (Natronobacterium pharaonis) studied by low-temperature spectrophotometry. Biochemistry, 31,2093−2098.

16. Yang CS, Sineshchekov O, Spudich EN, & Spudich JL (2004) The cytoplasmic membrane-proximal domain of the Htrll transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II. J. Biol. Chem., 279,42 970−42 976.

17. Bergo VB, Spudich EN, Rothschild KJ, & Spudich JL (2005) Photoactivation perturbs the membrane-embedded contacts between sensory rhodopsin II and its transducer. J. Biol. Chem., 280,28 365−28 369.

18. Falke JJ & Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci., 26,257−265.

19. Kim KK, Yokota H, & Kim SH (1999) Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature, 400, 787−792.

20. Chi YI, Yokota H, & Kim SH (1997) Apo structure of the ligand-binding domain of aspartate receptor from Escherichia coli and its comparison with ligand-bound or pseudoligand-bound structures. FEBSLett., 414,327−332.

21. Kim SH, Wang W, & Kim KK (2002) Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity. Proc. Natl. Acad. Sci. U. S. A, 99,11 611−11 615.

22. Lybarger SR & Maddock JR (1999) Clustering of the ehemoreeeptor complex in Escherichia coli is independent of the methyltransferase CheR and the methylesterase CheB. J. Bacteriol., 181, 5527−5529.

23. Homma M, Shiomi D, Homma M, & Kawagishi I (2004) Attractant binding alters arrangement of ehemoreeeptor dimers within its cluster at a cell pole. Proc. Natl. Acad. Sci. U. S. A, 101,3462−3467.

24. Ames P, Studdert CA, Reiser RH, & Parkinson JS (2002) Collaborative signaling by mixed ehemoreeeptor teams in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A, 99,7060−7065.

25. Gardina PJ & Manson MD (1996) Attractant signaling by an aspartate ehemoreeeptor dimer with a single cytoplasmic domain. Science, 274,425 426.

26. Tatsuno I, Homma M, Oosawa K, & Kawagishi I (1996) Signaling by the Escherichia coli aspartate ehemoreeeptor Tar with a single cytoplasmic domain per dimer. Science, 274,423−425.

27. Francis NR, Wolanin PM, Stock JB, Derosier DJ, & Thomas DR (2004) Three-dimensional structure and organization of a receptor/signaling complex. Proc. Natl. Acad. Sci. U. S A, 101, 17 480−17 485.

28. Milburn MV, Prive GG, Milligan DL, Scott WG, Yeh J, Jancarik J, Koshland DE, Jr., & Kim SH (1991) Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science, 254,1342−1347.

29. Jung KH, Spudich EN, Trivedi VD, & Spudich JL (2001) An archaeal photosignal-transducing module mediates phototaxis in Escherichia coli. J. Bacteriol., 183,6365−6371.

30. Trivedi VD & Spudich JL (2003) Photostimulation of a sensory rhodopsin II/HtrII/Tsr fusion chimera activates CheA-autophosphorylation and CheY-phosphotransfer in vitro. Biochemistry, 42, 13 887−13 892.

31. Ottemann KM, Xiao W, Shin YK, & Koshland DE, Jr. (1999) A piston model for transmembrane signaling of the aspartate receptor. Science, 285, 1751−1754.

32. Kim SH (1994) «Frozen» dynamic dimer model for transmembrane signaling in bacterial chemotaxis receptors. Protein Sci., 3,159−165.

33. Lynch BA & Koshland DE, Jr. (1992) The fifth Datta Lecture. Structural similarities between the aspartate receptor of bacterial chemotaxis and the trp repressor of E. coli. Implications for transmembrane signaling. FEBS Lett., 307,3−9.

34. Chervitz SA & Falke JJ (1996) Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc. Natl. Acad. Sci. U. S. A, 93,2545−2550.

35. Yeh JI, Biemann HP, Prive GG, Pandit J, Koshland DE, Jr., & Kim SH (1996) High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor. J. Mol. Biol, 262,186−201.

36. Cochran AG & Kim PS (1996) Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain. Science, 271,1113−1116.

37. Liu Y, Levit M, Lurz R, Surette MG, & Stock JB (1997) Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBOJ, 16, 7231−7240.

38. Zhang С & Kim SH (2000) The effect of dynamic receptor clustering on the sensitivity of biochemical signaling. Рас. Symp. Biocomput., 353−364.

39. Oprian DD (2003) Phototaxis, chemotaxis and the missing link. Trends Biochem. Sci., 28, 167−169.

40. Falke JJ, Dernburg AF, Sternberg DA, Zalkin N, Milligan DL, & Koshland DE, Jr. (1988) Structure of a bacterial sensory receptor. A site-directed sulfhydryl study. J. Biol. Chem., 263,14 850−14 858.

41. Hughson AG & Hazelbauer GL (1996) Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo. Proc. Natl. Acad. Sci. U.S. A, 93,11 546−11 551.

42. Chervitz SA & Falke JJ (1995) Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor. J. Biol. Chem., 270,24 043−24 053.

43. Bass RB & Falke JJ (1998) Detection of a conserved alpha-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning. J Biol Chem, 273,25 006−25 014.

44. Bass RB, Coleman MD, & Falke JJ (1999) Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies. Biochemistry, 38,93 179 327.

45. Danielson MA, Bass RB, & Falke JJ (1997) Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor. J. Biol. Chem., 272,32 878−32 888.

46. Trammell MA & Falke JJ (1999) Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor. Biochemistry, 38,329−336.

47. Seeley SK, Wittrock GK, Thompson LK, & Weis RM (1996) Oligomers of the cytoplasmic fragment from the Escherichia coli aspartate receptor dissociate through an unfolded transition state. Biochemistry, 35,1 633 616 345.

48. Wu J, Long DG, & Weis RM (1995) Reversible dissociation and unfolding of the Escherichia coli aspartate receptor cytoplasmic fragment. Biochemistry, 34,3056−3065.

49. Seeley SK, Weis RM, & Thompson LK (1996) The cytoplasmic fragment of the aspartate receptor displays globally dynamic behavior. Biochemistry, 35,5199−5206.

50. Klare JP, Gordeliy VI, Labahn J, Buldt G, Steinhoff HJ, & Engelhard M (2004) The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBSLett., 564,219−224.

51. Bordignon E, Klare JP, Doebber M, Wegener AA, Martell S, Engelhard M, & Steinhoff HJ (2005) Structural analysis of a hamp domain: The linker region of the phototransducer in complex with sensory Rhodopsin II. J Biol. Chem.

52. Yarden Y & Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat. Rev Mol Cell Biol, 2,127−137.

53. Olayioye MA, Neve RM, Lane HA, & Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBOJ, 19,3159−3167.

54. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, & Yokoyama S (2003) An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell, 12, 541−552.

55. Choowongkomon К, Carlin CR, & Sonnichsen FD (2005) A structural model for the membrane-bound form of the juxtamembrane domain of the epidermal growth factor receptor. J Biol. Chem, 280,24 043−24 052.

56. Gerber D, Sal-Man N, & Shai Y (2004) Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J. Biol. Chem., 279, 21 177−21 182.

57. Sharpe S, Barber KR, & Grant CW (2002) Interaction between ErbB-1 and ErbB-2 transmembrane domains in bilayer membranes. FEBSLett., 519, 103−107.

58. Mendrola JM, Berger MB, King MC, & Lemmon MA (2002) The single transmembrane domains of ErbB receptors self-associate in cell membranes. J. Biol. Chem., 277,4704−4712.

59. Sharpe S, Barber KR, & Grant CW (2002) Evidence of a tendency to self-association of the transmembrane domain of ErbB-2 in fluid phospholipid bilayers. Biochemistry, 41,2341−2352.

60. Stanley AM & Fleming KG (2005) The transmembrane domains of ErbB receptors do not dimerize strongly in micelles. J. Mol. Biol., 347, 759−772.

61. Rigby AC, Grant CW, & Shaw GS (1998) Solution and solid state conformation of the human EGF receptor transmembrane region. Biochim Biophys Acta, 1371,241−253.

62. Aifa S, Aydin J, Nordvall G, Lundstrom I, Svensson SP, & Hermanson О (2005) A basic peptide within the juxtamembrane region is required for EGF receptor dimerization. Exp. Cell Res., 302,108−114.

63. Kil SJ & Carlin С (2000) EGF receptor residues leu (679), leu (680) mediate selective sorting of ligand-receptor complexes in early endosomal compartments. J. Cell Physiol, 185,47−60.

64. Martin-Nieto J & Villalobo A (1998) The human epidermal growth factor receptor contains a juxtamembrane calmodulin-binding site. Biochemistry, 37, 227−236.

65. Hubbard SR (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J., 16,5572−5581.

66. Ge G, Wu J, Wang Y, & Lin Q (2002) Activation mechanism of solubilized epidermal growth factor receptor tyrosine kinase. Biochem. Biophys. Res. Commun., 290,914−920.

67. Sako Y, Minoghchi S, & Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol., 2,168−172.

68. Moriki T, Maruyama H, & Maruyama IN (2001) Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J. Mol. Biol., 311, 1011−1026.

69. Yu X, Sharma KD, Takahashi T, Iwamoto R, & Mekada E (2002) Ligand-independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand-induced EGFR signaling. Mol. Biol. Cell, 13, 2547−2557.

70. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell, 103, 211−225.

71. Honegger AM, Schmidt A, Ullrich A, & Schlessinger J (1990) Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells. Mol. Cell Biol., 10,4035−4044.

72. Zelic B, Vasic-Racki D, Wandrey C, & Takors R (2004) Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor. Bioprocess Biosyst. Eng, 26,249−258.

73. Oprian DD, Molday RS, Kaufman RJ, & Khorana HG (1987) Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. U. S. A, 84, 8874−8878.

74. Reeves PJ, Kim JM, & Khorana HG (2002) Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc. Natl. Acad. Sci. U. S. A, 99, 13 413−13 418.

75. Chen С & Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol., 7,2745−2752.

76. O’Mahoney JV & Adams ТЕ (1994) Optimization of experimental variables influencing reporter gene expression in hepatoma cells following calcium phosphate transfection. DNA Cell Biol., 13,1227−1232.

77. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227,680−685.

78. Sreerama N & Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem., 287, 252−260.

79. Sreerama N, Venyaminov SY, & Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem., 287, 243−251.

80. Chataway TK & Barritt GJ (1995) Detection of a 65 kDa ras binding protein in rat and sheep brain cytosol using a chemical cross linking agent. Mol Cell Biochem., 145, 111−120.

81. Mattson G, Conklin E, Desai S, Nielander G, Savage MD, & Morgensen S (1993) A practical approach to crosslinking. Mol Biol Rep., 17,167−183.

82. Rudolph J & Oesterhelt D (1996) Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J. Mol. Biol., 258, 548−554.

83. Spudich EN, Hasselbacher С A, & Spudich JL (1988) Methyl-accepting protein associated with bacterial sensory rhodopsin I. J. Bacterid., 170, 4280−4285.

84. Sundberg SA, Bogomolni RA, & Spudich JL (1985) Selection and properties of phototaxis-deficient mutants of Halobacterium halobium. J. Bacteriol., 164,282−287.

85. Terwilliger TC, Wang JY, & Koshland DE, Jr. (1986) Surface structure recognized for covalent modification of the aspartate receptor in chemotaxis. Proc. Natl. Acad. Sci. U. S. A, 83,6707−6710.

86. Perazzona В & Spudich JL (1999) Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum. J. Bacteriol., 181, 5676−5683.

87. Wilkins MR, Lindskog I, Gasteiger E, Bairoch A, Sanchez JC, Hochstrasser DF, & Appel RD (1997) Detailed peptide characterization using PEPTIDEMASS-a World-Wide-Web-accessible tool. Electrophoresis, 18, 403−408.

88. Hirst JD & Brooks CL, III (1994) Helicity, circular dichroism and molecular dynamics of proteins. J. Mol. Biol., 243, 173−178.

89. Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct., 22,67−97.

90. Timasheff SN (1998) Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. Adv. Protein Chem., 51, 355−432.

91. Christian JH & Waltho J A (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta, 65, 506−508.

92. Lai MC & Gunsalus RP (1992) Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. JBacteriol., 174, 7474−7477.

93. Madern D, Ebel C, & Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles., 4,91−98.

94. Zinchenko AA & Yoshikawa К (2005) Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment. Biophys. J., 88,4118−4123.

95. Consonni R, Zetta L, Longhi R, Toma L, Zanaboni G, & Tenni R (2000) Conformational analysis and stability of collagen peptides by CD and by 1H- and 13C-NMR spectroscopies. Biopolymers, 53,99−111.

96. Dyson HJ & Wright PE (2001) Nuclear magnetic resonance methods for elucidation of structure and dynamics in disordered states. Methods Enzymol., 339,258−270.

97. Arrondo JL, Muga A, Castresana J, & Goni FM (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog. Biophys Mol. Biol., 59,23−56.

98. Jackson M & Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev. Biochem Mol. Biol., 30,95−120.

99. Pribic R, van Stokkum IH, Chapman D, Haris PI, & Bloemendal M (1993) Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra. Anal. Biochem, 214,366−378.

100. Heimburg T, Schuenemann J, Weber K, & Geisler N (1996) Specific recognition of coiled coils by infrared spectroscopy: analysis of the three structural domains of type III intermediate filament proteins. Biochemistry, 35, 1375−1382.

101. Reisdorf WC, Jr. & Krimm S (1996) Infrared amide Г band of the coiled coil. Biochemistry, 35,1383−1386.

102. Long DG & Weis RM (1992) Oligomerization of the cytoplasmic fragment from the aspartate receptor of Escherichia coli. Biochemistry, 31,99 049 911.

103. Timmins PA & Zaccai G (1988) Low resolution structures of biological complexes studied by neutron scattering. Eur. Biophys. J., 15,257−268.

104. Svergun D, Barberato C, & Koch MHJ (1995) CRYSOL A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. Journal of Applied Crystallography, 28, 768−773.

105. Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. Journal of Applied Crystallography, 29, 134−146.

106. Guinier A & Fournet G (1955) Small Angle Scattering of X-rays. Wiley, New York.

107. Svergun DI, Richard S, Koch MH, Sayers Z, Kuprin S, & Zaccai G (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc. Natl. Acad. Sci. U. S. A, 95,2267−2272.

108. Jacrot В (1976) Study of Biological Structures by Neutron-Scattering from Solution. Reports on Progress in Physics, 39,911−953.

109. Deleage G & Roux В (1987) An algorithm for protein secondary structure prediction based on class prediction. Protein Eng, 1,289−294.

110. Geourjon С & Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci., 11, 681−684.

111. Combet C, Blanchet C, Geourjon C, & Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci., 25, 147−150.

112. Lupas A, Van Dyke M, & Stock J (1991) Predicting coiled coils from protein sequences. Science, 252, 1162−1164.

113. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, & Dunker AK (2001) Sequence complexity of disordered protein. Proteins, 42,38−48.

114. Thomson R, Hodgman TC, Yang ZR, & Doyle AK (2003) Characterizing proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics, 19, 1741−1747.

115. Thomson R & Esnouf R (2004) Prediction of natively disordered regions in proteins using a bio-basis function neural network. Springer-Verlag, Berlin-Heidelberg.

116. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, & Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res., 32, D138-D141.

117. Greenfield NJ & Hitchcock-DeGregori SE (1993) Conformational intermediates in the folding of a coiled-coil model peptide of the N-terminus of tropomyosin and alpha alpha-tropomyosin. Protein Sci., 2, 1263−1273.

118. Maruyama IN, Mikawa YG, & Maruyama HI (1995) A model for transmembrane signalling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking. J. Mol. Biol., 253,530−546.

119. Jones DH, Rigby AC, Barber KR, & Grant CW (1997) Oligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers. Biochemistry, 36, 12 616−12 624.

120. Jones DH, Barber KR, VanDerLoo EW, & Grant CW (1998) Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Biochemistry, 37, 1 678 016 787.

121. Pike LJ & Casey L (2002) Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry, 41, 10 315−10 322.

122. Pike LJ, Han X, & Gross RW (2005) Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J. Biol. Chem., 280,26 796−26 804.

123. Stork M, Giese A, Kretzschmar HA, & Tavan P (2005) Molecular dynamics simulations indicate a possible role of parallel beta-helices in seeded aggregation ofpoly-Gln. Biophys. J., 88,2442−2451.

124. Estrada LD & Soto С (2006) Inhibition of protein misfolding and aggregation by small rationally-designed peptides. Curr. Pharm. Des, 12, 2557−2567.

125. Houliston RS, Hodges RS, Sharom FJ, & Davis JH (2004) Characterization of the proto-oncogenic and mutant forms of the transmembrane region of Neu in micelles. J. Biol. Chem., 279,24 073−24 080.1. БЛАГОДАРНОСТИ

126. Техническую поддержку работы осуществляли Илона Риттер (Ilona Ritter), Кристиан Бакен (Christian Baeken) и Саша Лееман (Sascha Lehmann).

127. Эффективное решение многочисленных административных проблем является заслугой Биргит Герман (Birgit Gehrmann) и Анны Паулюс (Anna Paulus).

128. Наконец, я говорю спасибо своей жене и коллеге, к.ф. -м.н. Ольге Сергеевне Мироновой, поддерживавшей меня и помогавшей мне на всех этапах подготовки и написания диссертационной работы. Любовь и забота, постоянно окружавшие меня, воистину творили чудеса.

Заполнить форму текущей работой